Core for Large Datasets: Rough Sets on FPGA
نویسندگان
چکیده
In this paper we propose the FPGA and softcore CPU based device for large datasets core calculation using rough set methods. Presented architecture has been tested on two real datasets by downloading and running presented solution inside FPGA. Tested datasets had 1 000 to 10 000 000 objects. The same operations were performed in software implementation. Obtained results show the big acceleration in computation time using hardware supporting core generation in comparison to pure software implementation.
منابع مشابه
A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملA New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)
Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...
متن کاملDiagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets
With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...
متن کاملDesign and Implementation of Rough Set Algorithms on FPGA: A Survey
Rough set theory, developed by Z. Pawlak, is a powerful soft computing tool for extracting meaningful patterns from vague, imprecise, inconsistent and large chunk of data. It classifies the given knowledge base approximately into suitable decision classes by removing irrelevant and redundant data using attribute reduction algorithm. Conventional Rough set information processing like discovering...
متن کاملRough Margin Based Core Vector Machine
1 The recently proposed rough margin based support vector machine (RMSVM) could tackle the overfitting problem due to outliers effectively with the help of rough margins. However, the standard solvers for them are time consuming and not feasible for large datasets. On the other hand, the core vector machine (CVM) is an optimization technique based on the minimum enclosing ball that can scale up...
متن کامل